
Tevatron BPM Software Specifications for Data Acquisition, Version 9.0, 3/31/2004

Fermilab/BD/TEV

Beams-doc-1067-v9
March 31, 2004

Version 9.0

Tevatron Beam Position Monitor Upgrade

Sof

DRAFT

Luciano Piccoli, Margaret
Fermilab, C

Abstract

This document contains the design fo
The proposed design defines a genera
BPM projects across the laboratory
functionality necessary to meet the re

3/31/04

tware Design

DRAFT DRAFT

 Votava, Dehong Zhang, Dinker Charak
omputing Division, CEPA

r the BPM/BLM upgrade data acquisition software.
l BPM framework that can be used on other similar
. A specialization of the framework provides the
quirements of the Tevatron BPM upgrade project.

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 2

1 INTRODUCTION... 4

2 PROPOSED TEVATRON BPM SOFTWARE ... 5
2.1 CONTROL ... 5
2.2 BUFFERING .. 5
2.3 DATA ACQUISITION ... 6
2.4 ACNET COMMUNICATION .. 6
2.5 BUFFER READOUT.. 6
2.6 DEBUG AND DIAGNOSTICS... 6
2.7 SOFTWARE DIAGRAM .. 6

3 SOFTWARE DESIGN ... 9
3.1 USE CASES... 9

3.1.1 Initialization.. 10
3.1.2 Mode Change .. 11
3.1.3 Buffer Readout .. 13
3.1.4 Diagnostic ... 13
3.1.5 Alarm... 14
3.1.6 Data Acquisition ... 15
3.1.7 State Device Change ... 15
3.1.8 Configuration Change .. 16

3.2 CLASS DIAGRAMS.. 17
3.2.1 Tasks ... 17
3.2.2 Controls... 18
3.2.3 Events.. 19
3.2.4 Event Listeners and Generators.. 20
3.2.5 Data... 20
3.2.6 Alarms ... 21

3.3 ACTIVITY DIAGRAMS... 22
3.4 SEQUENCE DIAGRAMS ... 25

3.4.1 Initialization.. 25
3.4.2 Mode Change .. 27
3.4.3 Buffer Readout .. 28
3.4.4 Alarms ... 30
3.4.5 Events.. 31
3.4.6 Data Acquisition ... 32

3.5 PACKAGES ... 32
3.5.1 Generic BPM classes (GBPM) ... 33
3.5.2 Tevatron BPM classes (TBPM) .. 33
3.5.3 Implementation ... 35

4 APPENDIX.. 40
4.1 THE RECYCLER SOFTWARE.. 40

4.1.1 Control .. 40
4.1.2 Buffering ... 40

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 3

4.1.3 Readout ... 41
4.1.4 ACNET Communication.. 41
4.1.5 Debug and Diagnostics... 41
4.1.6 Alarms ... 41

4.2 CLASS DIAGRAM.. 42

5 BIBLIOGRAPHY... 43

Table of Figures

Figure 1 - Proposed tasks, queues, command and data flow .. 7
Figure 2 - Tasks for the TBPM system 2... 8
Figure 3 – Tevatron BPM front-end software use cases... 10
Figure 4 - Class diagram for tasks in the system .. 17
Figure 5 - Main control classes... 18
Figure 6 - Events in the system... 19
Figure 7 - Event listeners and generators.. 20
Figure 8 - Reading and saving data... 21
Figure 9 - Alarm classes ... 22
Figure 10 - ControlTask flow ... 22
Figure 11 - DataAcquisitionTasks flow .. 24
Figure 12 - BufferReadoutTask flow... 25
Figure 13 - Objects creation sequence .. 26
Figure 14 - Tasks initialization ... 27
Figure 15 - Changing modes... 27
Figure 16 - Fast abort buffer readout .. 29
Figure 17 - Alternative fast time plot readout... 30
Figure 18 - Alarm generation.. 30
Figure 19 - Clearing an alarm ... 31
Figure 20 - Event generation... 31
Figure 21 - State device change .. 32
Figure 22 - Fast abort trigger generation .. 32
Figure 23 – Complete TBPM front-end software class diagram (mixed of generic and

TeV specific classes)... 42

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 4

1 Introduction

This document describes the design chosen for the front-end data acquisition software for
the Tevatron BPM upgrade. The goal is to provide clear guidelines for implementing and
delivering a system that fulfills the specifications requirements according to the
document #860.

Besides the requirements, other factors have to be considered for the design in order to
achieve high quality software. These are:

- Maintainability: the software should be easy to maintain and make minor changes
to adapt to new requirements;

- Extensibility: software should be easily extensible. The addition of new modes of
operation should be a simple task involving minimal changes that do not affect
existing components;

- Flexibility: configuration of the software should be easy to modify, adapting it to
new and unexpected situations.

- Portability: software can be reused on another machines (e.g. Main Injector)

With these principles in mind the expected output will be:

- A generic software framework for Beam Position Monitor systems;
- A working Tevatron BPM system that is maintainable and extensible.

The next section the current Recycler front-end software is discussed. It will serve as
base for the design and implementation of the Tevatron software. The next section
describes the design of the system.

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 5

2 Proposed Tevatron BPM Software

The proposed Tevatron front-end data acquisition software is based on the software
developed for the Recycler (see section 4.1). Many of its components can be reused on
the Tevatron systems, such as timing control modules and readout procedures.
Additionally, the tevatron system would benefit from the use of the backdoor services,
making it possible to control and read out data bypassing the ACNET/MOOC
infrastructure.

2.1 Control

Similar to the recycler software, the tevatron BPM software will have a control task that
is responsible for receiving ACNET and backdoor command for switching between
modes of acquisition. The control task will have all data acquisition tasks started at
initialization1, so no additional time to create tasks will be needed while the system is
running. The control task will need however to resume or suspend tasks according to the
mode selected. VxWorks takes about five times longer to start a task than suspending or
restarting it (in microseconds on the PPC603 processor).

Before letting the readout task run, the control task must configure the EchoTek boards
and the timing hardware. On the recycler software, the configuration is done by the
readout task when it is started.

The control task will receive commands through an input queue. MOOC and the
backdoor send events to the queue. Status from the control task is passed back through a
response mechanism. Certain types of trigger also generate events that are passed along
to the control task via its command queue.

2.2 Buffering

Every data acquisition task has a data buffer associated to it. This buffer can be shared
among other data acquisition tasks and also with the buffer readout tasks, which handle
outside data requests (from MOOC and backdoor). For controlling access and avoiding
race conditions semaphores must protect all data buffers.

Buffers can be used as a data destination or a data source. On a trigger, a data acquisition
task may request data from the hardware, or it may request data from an internal buffer.
This will be handled transparently. In both cases, the destination of the read out data will
be another buffer. The ability of having a buffer as a data source helps to implement slow
read out buffers, which would get input data from fast read out buffers (e.g. Fast Abort
Buffer vs. Slow Abort Buffer (a more detailed list of buffers is given at section 3.5.2.1)).

1 The recycler software has only one data acquisition task running at a time. When modes are switched, the
control task starts the task for that new mode.

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 6

2.3 Data Acquisition

The system will have several readout tasks. Each one will be responsible for filling at
least one data buffer (Fast Abort, Slow Abort, BLM). Every task runs within a closed
loop and remains waiting for a trigger or command, which is received through its input
trigger queue.

A TCLK, BSYNC or State Device Change can generate the trigger. These triggers arrive
at the crate controller via interrupts or software function calls, which in turn create a
trigger entity and send it to the input queues of the readout tasks. The trigger awakes the
readout task, which performs its job. It consists of reading the latest data from its data
source and writing it to its data destination(s).

2.4 ACNET Communication

ACNET requests will be handled via queues. When a MOOC receives an external
ACNET request (for reading or setting) it invokes a callback. The callback is part of the
Tevatron BPM software, and according to the request will create and send a request to the
control queue or buffer readout queue (see Figure 1). After completing the request, the
BPM tasks (control task or buffer readout task) send back a status and/or data to the
callback.

2.5 Buffer Readout

The user requests for reading data buffers are received via MOOC/ACNET according to
the above section. The system has a pool of buffer readout tasks that are waiting for
requests coming into the buffer readout queue. The number of tasks can be configured,
and one task means that all requests will be handled serially and more than one task
means that requests can be processed in parallel if the buffers to be read are different. If
data from the same buffer is requested, it will be handled serially because the buffers are
protected by semaphores and only one task can access its contents at a time.

2.6 Debug and Diagnostics

The backdoor scheme will be used in the tevatron BPM data acquisition software. The
communication with the data acquisition software will follow the same method used by
ACNET/MOOC calls. Whenever a request comes from the labview interface that is
mapped to a callback that sends the request through a queue and gets the reply from the
system. The DA software will look the same from the viewpoint of the backdoor system
and the ACNET/MOOC system.

2.7 Software Diagram

The following picture (Figure 1) shows the proposed tasks, queues, data and command
flow for a generic BPM system. The structure shown is valid for one crate within the

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 7

system. The blue circles represent the tasks; the green boxes are the input queues for the
tasks; the yellow boxes are the data sources and data destinations; and the blue boxes are
external entities (triggers and MOOC/Backdoor).

Figure 1 - Proposed tasks, queues, command and data flow

Object oriented design is used to realize the entities depicted in figure 1. The Unified
Modeling Language is used to describe general use cases, classes and its relationships,
control and data flows.

Figure 2 shows a specialized version for the Tevatron based on the generic BPM system
(for a single crate). In the picture there are several data acquisition tasks (named BPM
Fast Abort Task, BPM Slow Abort Task, Turn by Turn Task, etc), some buffers are
defined (BPM Fast Abort Buffer, BPM Slow Abort Buffer, Turn by Turn Buffer, etc) and
there is only one Buffer Readout Task2.

2 There is only one Buffer Readout Task shown, but the design allows it to have multiple tasks.

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 8

Figure 2 - Tasks for the TBPM system 2

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 9

3 Software Design

The remaining sections of this document describe the design of the Tevatron BPM
upgrade front-end software. It takes in consideration general software quality aspects as
well as aims to provide an extensible framework for future similar projects within the
laboratory.

The following sections describe the use cases identified for the project, static structures
and dynamic diagrams. Use cases follow the format adopted by Alistair Cockburn
[Cockburn] and the notation of static and dynamic diagrams follow the UML standard
[Fowler].

3.1 Use Cases

One crate in the TeV BPM DAQ system interacts with the extenal world through actions
initiated by actors. The main actors interacting with the system are: User and Trigger.
Actors being used by the system are: EchoTek, BLM and TimingSystem.

The User can be a control room operator, a beam physicist or another software. The User
interacts with the system by initializing it; requesting mode changes; reading out its
buffers; activating diagnostics. On any of these interactions there can be alarms, which is
handled by a separate use case.

The other actor in the system, the Trigger, is any external event that is capable of
changing the internal state of the system. A trigger activates the data acquisition from
BPM and BLM boards; and input to state device changes. The user may request
configuration changes of the system at any time.

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 10

Figure 3 – Tevatron BPM front-end software use cases

Figure 3 shows the use cases identified for the Tevatron BPM front-end system. Each
ellipse represents one use case. The use cases are described in more detail in the
following sections.

3.1.1 Initialization

3.1.1.1 Description
This use case allows the user to initialize one front-end DAQ system crate.

3.1.1.2 Basic Flow of Events
1. User ask the system (one crate) to be initialized
2. Control task is created

a. Control task creates control task
3. Configuration for the crate is downloaded
4. Control task initializes EchoTek hardware

a. EchoTek hardware is tested (optional)
5. Control task initializes timing system

a. Timing hardware is tested (optional)
6. Control task creates data acquisition tasks

a. Queues for receiving triggers are created by the tasks
7. Control task allocates internal buffers
8. Control task creates buffer read out tasks

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 11

a. Buffer request queue is created
9. Control task creates alarm task

a. Alarm queue is created by the alarm task
10. Alarm task announces itself to the tasks in the system
11. Trigger generators are created
12. Trigger listeners are registered
13. System is enabled
14. All tasks are started
15. System is ready for use (READY state)

3.1.1.3 Alternative Flows
1. Control task fails to start (2) – other basic OS failures follow same steps

a. Report error to user
b. Generate alarm (if alarm task is running)

2. Could not download configuration (3)

a. Report error to user
b. Use default configuration
c. Limit usage of the system (e.g. don’t support turn-by-turn requests)

3. EchoTek card(s) did not pass test (4.a)

a. Generate internal alarm
b. Set ALARM state
c. Report error to user

4. Timing system did not pass test (4.a)
a. Generate internal alarm
b. Set ALARM state
c. Report error to user

3.1.1.4 Preconditions
None.

3.1.1.5 Postconditions
 System is taking data in normal operation mode (READY state) or in a limited
operational mode.

3.1.2 Mode Change

3.1.2.1 Description
 This use case allows the user to request a mode change of the front-end DAQ
software. There are basically two modes of operation: closed orbit and turn-by-turn. The
default mode is closed orbit, and the turn-by-turn mode is enabled when the user requests

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 12

it. When changing modes, the system has to reload and reprogram the EchoTek boards
and timing hardware according to the mode specification.

3.1.2.2 Basic Flow of Events
1. User requests a mode change (e.g. from closed orbit to turn by turn)
2. MOOC call back creates an internal request for mode change
3. Request is posted to the control task queue
4. Request is retrieved by the control task
5. Control task checks the request
6. EchoTek boards are configured
7. Timing system is configured
8. Triggers are enabled/disabled (e.g. 2 ms closed orbit trigger)
9. Read out tasks are suspended/resumed
10. Mode has changed (CLOSED_ORBIT or TURN_BY_TURN state)

3.1.2.3 Alternative Flows
1. Mode cannot be changed (4)

a. Return error to user
b. Generate internal alarm

2. Requested mode change to the current mode (4)

a. Restart mode (e.g. second turn-by-turn request); or
b. Ignore request and return error.

3. Data acquisition task for current mode is in the middle of a readout (4)
a. Data partially read must be thrown away
b. Pointers and counters are not updated
c. Data acquisition task has to go back to a safe place when it is restarted, i.e.

it cannot go back to where it was when the mode was changed.

4. Failure to change mode (6 to 9)
a. There are conditions preventing the system to change mode

3.1.2.4 Preconditions
 System is in a known operational state.

3.1.2.5 Postconditions
 System has been reconfigured to run in a new mode and is acquiring or ready to
acquire data.

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 13

3.1.3 Buffer Readout

3.1.3.1 Description
 This use case allows users to request data from the front-end software. Data is
read out from the data acquisition boards and stored in internal buffers. Data from these
internal buffers are requested in this use case, and portions of it or all its contents are
returned.

3.1.3.2 Basic Flow of Events
1. User requests data buffer from the system
2. An internal request is created
3. Request is posted to the buffer readout queue
4. Request is retrieved by one buffer readout task
5. The request is verified and the buffer is selected
6. Buffer is read and converted to online format (see document #860 for structures)
7. A reply with the resulting data structure returns from the buffer readout task
8. Data is sent back to the user

3.1.3.3 Alternative Flows
1. Request is not valid (5)

a. The data requested does not exist or is out of boundaries

2. No data in the buffer (6)

a. Error is returned

3.1.3.4 Preconditions
 Internal data buffers have data.

3.1.3.5 Postconditions
 None

3.1.4 Diagnostic

3.1.4.1 Description
 Use case used when user wants to get more information about the system health.
Level of debug can be increased; buffers, queues and tasks are monitored more closely.

3.1.4.2 Basic Flow of Events
1. User requests system to enable diagnostics through an online application
2. An internal request is created

a. A request can be:
i. Increase debug/diagnostic level

ii. Return statistics information

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 14

iii. Start test sequences (for EchoTek, timing board, calibration
subsystem)

3. Request is posted to the control task queue
4. Request is retrieved by control task
5. Control task perform the diagnostic request

3.1.4.3 Alternative Flows
 None

3.1.4.4 Preconditions
System has been initialized and may not be performing well.

3.1.4.5 Postconditions
 If item 2.a.i – system is running at a higher debug/diagnostics level. Performance
of the system may be affected.

3.1.5 Alarm

3.1.5.1 Description
 This is a use case used by other use cases in the system. It is triggered by alarm
situations within the system. It is generated internally and there is no input from external
actors. The alarm is handled by an alarm task, which may announce it to the external
world, depending on how critical is the situation. The system enters an alarm state that is
cleared when the alarm conditions have been removed.

3.1.5.2 Basic Flow of Events
1. An internal failure is detected
2. An alarm is created
3. Alarm is posted to the alarm queue
4. Alarm task retrieves alarm from queue
5. Task evaluates the priority of the alarm
6. Task generate an external alarm, if necessary
7. Control task is informed of the alarm state
8. Control task decides the alarm is cleared
9. Alarm clear event is create
10. Alarm clear is posted to the alarm queue
11. Alarm task retrieves alarm clear from queue
12. Alarm task clear the alarm state

3.1.5.3 Alternative Flows
1. User clears the alarm through the online software (8)

3.1.5.4 Preconditions
 A failure or a potential future failure is detected.

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 15

3.1.5.5 Postconditions
 System is set to an alarm state; the state can be cleared after the alarm condition is
removed.

3.1.6 Data Acquisition

3.1.6.1 Description
 This use case describes the actual data acquisition part of the system. The external
actors involved with this use case are the triggers. A trigger is any entity that starts the
action of data acquisition. Following a trigger, the system has to perform the read out of a
data source (hardware or internal buffers) and save the data to internal buffers.

3.1.6.2 Basic Flow of Events
1. A trigger is generated and received by the system
2. A trigger event is created and posted to an event queue
3. The readout task retrieves the trigger from the queue
4. Readout task performs the data acquisition
5. Data is saved in an internal buffer
6. Readout task is ready for next trigger

3.1.6.3 Alternative Flows
1. Data source is not ready to send data (4)

a. Readout task has to wait for a defined amount of time
b. If there is a time out an alarm is generated

3.1.6.4 Preconditions
 Data acquisition hardware and timing system are configured and ready to provide
data.

3.1.6.5 Postconditions
 New data is saved in internal buffer and can be latter be retrieved by the user

3.1.7 State Device Change

3.1.7.1 Description
 This use case illustrates the reaction of the system after a state device is changed.
A state device can be considered an actor, more specifically a trigger, even though it does
not trigger any data acquisition. The system has to monitor several state devices, which
contain information about the accelerator status, beam type, etc. Those are important
information that is part of the metadata sent back to the user (Buffer Readout use case).

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 16

3.1.7.2 Basic Flow of Events
1. A state change is received by the system
2. A state change event is created
3. The event is posted to the control queue
4. The control task receives the event
5. Control task updates the metadata

3.1.7.3 Alternative Flows
 None

3.1.7.4 Preconditions
 None

3.1.7.5 Postconditions
 Metadata is updated with latest state device status.

3.1.8 Configuration Change

3.1.8.1 Description
The configuration use case describes the actions taken by the user in order to change

the behavior of the system. The user can specify new values for calibration, timing, filter
settings, etc. During the initialization, the system receives a default configuration, and
this use case represents system changes after the initialization phase.

3.1.8.2 Basic Flow of Events
1. User request a configuration change (through some mechanism)
2. A control request is created
3. Control task receives the request
4. Request is validated
5. Check if configuration can be changed
6. Change configuration

3.1.8.3 Alternative Flows
1. Request is not valid (4)

a. Generate error
b. Do not change configuration
c. Generate internal alarm

2. Configuration cannot be changed (e.g. system is in turn-by-turn mode)
a. Wait until configuration can be changed

3.1.8.4 Preconditions
System is initialized.

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 17

3.1.8.5 Postconditions
New configuration has been applied to the system.

3.2 Class Diagrams

This section describes the static structure of the system. The complete class diagram is
available in the appendix section. We broken down the main diagram into pieces that
handle a specific part of the system. Every piece is described below, each one contains a
part of the full class diagram. Every class name is refered in italic.

3.2.1 Tasks

The system has a certain number of independent processes; each one has a specific job.
The tasks in the system are all subclasses of a VxWorks task wrapper (Class Task). The
wrapper contains basic methods and attributes that represent a task. Figure 4 contains the
task classes in the system. The upper class represents the wrapper.

Figure 4 - Class diagram for tasks in the system

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 18

The system is overseen by a ControlTask, which is responsible for initializing most of the
system, configure hardware (EchoTek boards and timing module), switching acquisition
modes, control other tasks in the system and keep track of the overall state.

The DataAcquisitionTask represents the tasks that are responsible for acquiring data and
storing them in internal buffers. There can be several DataAcquisitionTask subclasses,
each one has a different acquisition method, can read data from different sources and
store them in different destinations. Examples are BLMDataAcquisitionTask,
ClosedOrbitTask and TurnByTurnTask.

BufferReadoutTask provides a standard interface to retrieve data from internal buffers.
That interface can be used by MOOC and backdoor for requesting any type of data
(closed orbit, turn-by-turn, display frame, etc.). The system can provide parallel access to
the internal data buffers. That feature is available through the TaskPool class. The
BufferReadoutTaskPool provides any number of BufferReadoutTask, which can handle
requests in parallel.

The AlarmTask handles any alarms generated in the system. It is its responsibility to
check the system alarm queue and decide whether to put the system in an alarm state and
send an alarm to the outside world.

3.2.2 Controls

The main class in the system is the ControlTask. It is however controlled by the BPM
class. The class BPM make a few assumptions about the system, and has common code
for BPM systems in general. A more specialized class (TBPM) has specific
implementation for the Tevatron BPM system. It contains objects of the classes TSG and
EchoTek, which are the hardware present in the system VME crate. Additional hardware
classes may not be shown in the diagram on Figure 5.

Figure 5 - Main control classes

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 19

The BPM class contains the entry point of the system. It is responsible for starting the
ControlTask, which will in turn start the rest of the system.

3.2.3 Events

The system is composed of tasks and queues. The information flowing through the
queues into the tasks are events. Event is the super class which has the most basic
information about one event.

There can be several types of events. Those are described as subclasses of Event. Types
of event are:

• Alarm: event generated by a task signaling an alarm situation;
• Request: generic request;

o ReadoutRequest: request to read an internal buffer;
o ControlRequest: request of some control action (e.g. change mode)

• Reply: generic reply for a request;
o ReadoutReply: reply for a buffer readout operation;

• Trigger: event generated on a trigger.

Figure 6 - Events in the system

An Event is generated by an EventGenerator. The EventGenerator has a list of
EventListeners, to which an event is broadcasted after being generated. EventListeners
can be dinamically added or removed from the list. The EventListener receives an event
in its eventQueue. The Event is removed from the queue by handleEvent ().

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 20

3.2.4 Event Listeners and Generators

Events can be generated and received by any entity in the system. Figure 7 shows the
classes that currently deal with events. EventListeners are:

• DataAcquisitionTask: receive Trigger events signaling the data acquisition
process;

• BufferReadoutTask: receive ReadoutRequest events when buffered data is
requested.

EventGenerators are:

• StateChangeEventGenerator: generate a Trigger signaling a state device change;
• InterruptTriggerGenerator: generic event generator based on interrupts;

o TCLKGenerator: generate TCLK Triggers on interrupts;
o TimeTriggerGenerator: generate a time Trigger on every tick of a timer.

EventListeners and EventGenerators:

• AlarmTask: receives Alarms from other tasks in the system; and generates Events
sent to the ControlTask to inform about the current alarm situation;

• ControlTask: receives ControlRequests and Triggers; and generates Alarms and
Triggers.

Figure 7 - Event listeners and generators

3.2.5 Data

During the data acquisition process the DataAcquisitionTasks perform reads from a
DataSource (EchoTek or BLM boards) and save the result to an internal DataBuffer. A
DataSource defines a generic class for reading out DataEntries. There can be several

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 21

types of DataSource. For the Tevatron BPM system three of them are defined: EchoTek,
BLM and DataBuffer (see Figure 8). This means that data can be retrieved either from the
EchoTek boards, BLM boards or from an internal buffer (e.g. a task can feed the slow
abort buffer with data from the fast abort buffer).

The destination of data read by the DataAcquisitionTask is a DataBuffer. It has
knowledge of the Metadata used to tag the data, such as beam type, accelerator state and
system status. All data entries are organized as DataEntries. The DataEntry can vary
depending on the type of measurement.

Figure 8 - Reading and saving data

The DataBuffers have data stored in a format that may be different from the format sent
to the end user through the BufferReadoutTasks. Data is formated according to a
PackStrategy. Depending on the data type and on the ReadoutRequest a specific
PackStrategy is used (e.g. ClosedOrbitPackStrategy and TBTPackStrategy).

3.2.6 Alarms

The classes related handling and generating alarms are shown on Figure 9. An Alarm is
generated by an AlarmGenerator. The generators in the system are the following tasks:
BufferReadoutTaks, DataAcquisitionTask and ControlTask.

The AlarmTask is responsible for receiving Alarms generated by the AlarmGenerators. It
declares an alarm state depending on the Alarm received.

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 22

Figure 9 - Alarm classes

3.3 Activity Diagrams

This section contains diagrams showing the work flow of different tasks in the system.
Figure 10 contains the basic flow for the ControlTask. It basically has to take care of the
initialization of the system and enter a closed loop waiting for commands from its input
queue. These commands are requests from MOOC, backdoor messages, alarms or
triggers.

After receiving a request from its input queue, the ControlTask starts to process the it.
This is represented by the ProcessRequest state, in which all types of input requests are
handled. Requests can be data acquisition, calibration or diagnostics commands.

Figure 10 - ControlTask flow

Luciano Piccoli
What happens if the control task gets stuck and don’t read the input queue? What if a very high priority request comes into the queue? The control task has to deal with it ASAP. Perhaps there should be a pool of control tasks for reading the input queue?

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 23

Similarly, the DataAcquisitionTasks run in a closed loop waiting for Triggers. Upon the
reception of a Trigger, the DataAcquisitionTask begins the data acquisition process from
its DataSource, which can be hardware or a software entity. The DataAcquisitionTasks
are independent of each other but may share some source code (e.g. TurnByTurn and
InjectionTbT in the picture).

Figure 11 depicts several DataAcquisitionTasks, but the functionality of some can be
combined into only one task. For example, the FastAbort may also be responsible for the
tasks performed by the SlowAbort. It is an implementation choice, and the final decision
may be driven by the performance of the options.

The framework also allows a DataAcquisitionTask to generate Triggers to another
DataAcquisitionTask. Suppose that there is an InjectionTbTClosedOrbit task. It would
receive a trigger from the InjectionTbT task informing it that new data is in the internal
buffer, and a closed orbit can be calculated.

The process of retrieving data from internal buffers is shown in Figure 12. A request
comming from Mooc or backdoor is posted on the queue and one of the
BufferReadoutTasks picks up the request, processes it and return the reply already in the
format expected by the online applications (doc #860).

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 24

Figure 11 - DataAcquisitionTasks flow3

3 The tasks depicted in the picture (swim lanes) do not necessarily represent how the system will be
implemented. Functionality of tasks can be combined (e.g. the InjectionTbT and TurnByTurn could be one
task).

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 25

Figure 12 - BufferReadoutTask flow

3.4 Sequence Diagrams

This section describes common software scenarios for the front-end Tevatron software.
The diagrams contain objects of the classes previously discussed and shows interactions
between them throughout the course of a given scenario. The sequences shown do not
correspond exactly to the implementation, but they serve as a guide to understand how
objects and classes are related to each other in a dynamic environment. The flow of
events starts at the top of the diagram and go downwards, following the string of method
calls.

3.4.1 Initialization

Figure 13 shows how the objects in the system are first created and what are the expected
operations. The entry point is the BPM object, which will create the ControlTask. The
ControlTask is responsible for creating most of the objects within the system, it must
instantiate the DataAcquisitionTasks, the BufferReadoutTasks, create the AlarmTask and
create the EventGenerators.

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 26

Figure 13 - Objects creation sequence

Following the instantiation of the objects in the system, the tasks need to be started in
order to do the actual work of data acquisition. The ControlTask is responsible for getting
them to work, as shown in Figure 14. After starting the tasks, the normal mode of
operation is enabled through changeMode ().

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 27

Figure 14 - Tasks initialization

3.4.2 Mode Change

The system has the ability to change modes of operation when running. The most
common modes are closed orbit and turn-by-turn4. The closed orbit mode is the default
mode of operation. Turn-by-turn mode is enabled on user request or on a programmed
Trigger. Figure 15 shows the sequence of operations when changing from the default
mode to the turn-by-turn mode.

Figure 15 - Changing modes

4 There can be a turn-by-turn request when the system is already in turn-by-turn mode. In this case, the
system must halt the current measurement and restart it according to the new specification

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 28

In the particular case depicted on Figure 15, the mode change is triggered by a user
command from MOOC. The command will be passed down to the controlTask as a
ControlRequest through the controlQueue.

The controlTask is responsible for changing the mode of operation of the EchoTek
boards (by loading a different configuration) and setting the timing system (TSG) to the
turn-by-turn mode. It is also its job to suspend and resume DataAcquisitionTasks
according to the mode of operation.

The action of suspending and resuming the DataAcquisitionTasks is accomplished by
sending control requests via their input trigger queue. When a DataAcquisitionTask
receives a suspend command it will ignore any triggers from that moment on. Upon the
reception of a resume command, the DataAcquisitionTask starts to process triggers.

After the new mode is enabled, the ControlTask returns a Reply to the MOOC framework
containing the result of the operation. In the figure the MOOC framework remains
blocked in a semaphore after submitting the request and is released upon receipt of the
reply, which involves a semaphore post operation.

3.4.3 Buffer Readout

Buffer readout operations follow the structure defined in Figure 16. Similarly to the
situation depicted in Figure 15, a request comes through the MOOC framework, a
BufferReadoutRequest is created and passed to the BufferReadoutTasks. Those have to
check the type of the request, get the data from the internal buffer and pack it in the
format described by the document 860.

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 29

Figure 16 - Fast abort buffer readout

Data packed from the internal buffer is passed to a Reply, which will be received by the
MOOC framework upon the completion of the operation. Similarly to the sequence
described in the above section, the MOOC framework remains blocked on a semaphore
while the system is processing its request. The semaphore is released after the Reply is
ready.

This buffer readout structure isolates MOOC from software internals. This allows
standard communication with other frameworks, such as the backdoor. The price to be
paid for the isolation of the code is the amount of processing involved.

For operations that require high rate of data readout, the sequence depicted in Figure 16
may not be efficient. For that purpose, it should be possible for the MOOC framework (or
backdoor) to have direct access to internal buffers. Since fast time plots are nothing more
than a single value, the access should be basically read the first element of the
DataBuffer. Figure 17 shows this alternative scenario.

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 30

Figure 17 - Alternative fast time plot readout

3.4.4 Alarms

All tasks in the system are capable of generating Alarms. Figure 18 shows the sequence
of an alarm generation. A task in the system creates an Alarm and it is sent to the
alarmQueue, which is monitored by the AlarmTask. This task decides the criticality of
the alarm and send out a MOOC alarm and informs the ControlTask that the system is in
an alarm state.

Figure 18 - Alarm generation

The alarm state can be cleared by the ControlTask through sending a clear message to the
AlarmTask (see Figure 19).

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 31

Figure 19 - Clearing an alarm

3.4.5 Events

Figure 20 shows a generic view of how an Event is handled in the system. The
EventGenerators create Events, which are sent to EventQueues owned by EventListeners.
An EventListener is usually a task and will receive events from its queue and process
them within the handleEvent () method.

Figure 20 - Event generation

A particular case of event handling is shown in Figure 21, where the generator is of the
type StateChangeEventGenerator, and the receiving side is the ControlTask.

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 32

Figure 21 - State device change

3.4.6 Data Acquisition

The data acquisition process is similar to the event handling scheme on Figure 20. The
event in question is a Trigger, generated by a TriggerGenerator. The event is sent to a
DataAcquisitionTask, which in turn will acquire data from a DataSource and save it to a
DataBuffer. This process is illustrated in Figure 22.

Figure 22 - Fast abort trigger generation

3.5 Packages

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 33

The system is designed to provide a flexible and generic framework for BPM projects for
other machines besides the Tevatron. For this purpose, the classes are divided in a generic
BPM class package and Tevatron BPM package.

3.5.1 Generic BPM classes (GBPM)

These are generic classes that form the BPM framework. These should be able to provide
a running system with hooks for machine specific code. It contains classes that provide
data acquisition, control, configuration management, alarms and buffering. The following
classes are part of the GBPM package:

• BPM
• Task

o ControlTask
o BufferReadoutTask
o DataAcquisitionTask
o AlarmTask

• Queue
• Semaphore
• EventGenerator

o StateChangeEventGenerator
o InterruptTriggerGenerator
o TCLKGenerator
o TimeTriggerGenerator

• AlarmGenerator
• Event

o Alarm
o Reques t

� ReadoutRequest
� ControlRequest

o Reply
� ReadoutReply

o Trigger
• DataSource

o DataBuffer
• Metadata
• DataEntry
• PackStrategy
• TaskPool

o BufferReadoutTaskPool
• CalibrationSystem
• TimingSystem

3.5.2 Tevatron BPM classes (TBPM)

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 34

These are the classes that implement the specific BPM behavior for the Tevatron
machine. Code for specific hardware and Tevatron alarms must be implemented in these
classes. Table 1 lists the classes that belong to the TBPM package.

Superclass Subclasses
BPM TBPM
DataAcquisitionTask TBPMClosedOrbitTask

TBPMDisplayTask
 TBPMTurnByTurnTask

TBPMInjectionTurnByTurnTask
TBPMProfileTask
TBLMFastAbortTask
TBLMDisplayTask

AlarmTask TBPMAlarmTask
DataSource EchoTek
TimingSystem TBPMTimingSystem (TSG)
Metadata TBPMMetadata
PackStrategy TBPMClosedOrbitPackStrategy
 TBPMTurnByTurnPackStrategy
 TBPMTimeSlicedPackStrategy
 TBLMPackStrategy
 TBLMTimeSlicedPackStrategy
DataEntry TBPMData

TBLMData
TBPMChannel

EventGenerator TCLKEventGenerator
 StateChangeEventGenerator
BufferReadoutTask TBPMBufferReadoutTask

Table 1 - TBPM classes

3.5.2.1 TBPM Buffers

Even though the data source of position, intensition and loss data are only the EchoTek
boards and the BLM chassis, the system must keep several types of data in different
buffers. Some of these data may be the same, what makes them different is the event that
triggered its acquisition. According to the AD document #903, these are the buffers that
must be implemented in the system:

BPM buffers:

• Fast Abort Buffer (array)
• Slow Abort Buffer (array)
• Fast Time Plot Buffer
• Profile Frame Buffer (array)
• Display Frame Buffer

Luciano Piccoli
Many of these don’t need to be implemented! The only differences will be the data source, data buffer and trigger type, and that is configurable!

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 35

• Snapshot Buffer

BLM buffers:

• Fast Abort Buffer (array)
• Display Buffer
• Fast Time Plot Buffer

These buffers in the system are realized by the class DataBuffer. The Fast Time Plot
buffers are the only ones that do not have its own memory location. When handling a
FTP request the system will return the latest value from the Fast Abort Buffer.

Data from the buffers are read by the BufferReadoutTask and organized by a
PackStrategy according to the structures defined in the AD document #860.

3.5.3 Implementation

This section is a guideline for the implementation of the system. It is divided into two
parts: the first one contains the elements related to the generic BPM framework and the
second lists the components of the Tevatron system.

It is highly recommended that every class have a unit test associated to it. The tests
should call all methods from the classes and check the returning data and status.

3.5.3.1 Building the generic framework

Implementation of classes is independent, otherwise noted that there are requirements.
First level of elements can be implemented in parallel, while elements within (a – z)
usually require sequential implementation. Here is the list of implementation tasks:

1. Buffers

a. Implement DataSource
This is a generic class to provide means to get data. It can return data
points or data arrays. The returning data are of the generic type
DataEntry.

b. Implement subclass that generates a known pattern (e.g. TestDataSource)
We need a data source class capable of generating predefined patterns
for testing, debugging and to provide diagnostics.

c. Implement DataEntry
It is a generic data point, it does not define the type of data it will carry,
this should be defined in its subclasses. It contains minimum information
such as a time stamp and the status of the data.

d. Implement Subclass of DataEntry (e.g. TestDataEntry)
This would be a class for testing and debugging the code. Can contain a
simple integer as the data.

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 36

e. Implement PackStrategy
Generic class that provides the method interface for packing data. This
will be used by the system when the user requests data. Data has to be
read from the internal buffer and repackaged into some format. The
subclasses of PackStrategy will provide the appropriate algorithm for
packing the data according to the users request.

f. Implement subclass of PackStrategy (e.g. TestPackStrategy)
For completing the Test environment there is the need of a PackStrategy
for our TestDataEntry. Should be a simple class that implements an
algorithm for packing TestDataEntry type of data. It will follow the
interface defined in the PackStrategy class.

2. Wrappers
a. Implement Task

This is a VxWorks task wrapper. It will allow a class to be a task by
providing a run () method, which is called by start (). start () will
encapsulate the system call taskSpawn. The class also should take care
of operating system errors that may ocurr and should keep information
such as priority and task id as attributes.

b. Implement Queue
Wrapper for the VxWorks queues. Should take care of operating system
errors and keep information about its status. Should provide methods for
retrieving current status and statistics.

3. Events (requires 2b)
a. Implement Event

An Event is a generic container for any kind of event in the system. An
event can be a 2ms trigger generated by a timer; a TCLK just received,
an interrupt coming from the timing system.

b. Implement EventListener (requires 2b)
The EventListener is a class that has an input queue, through which it
receives Events. Subclasses of EventListener will be able to receive
Events. It also provides interfaces for handling the received events.

c. Implement EventGenerator
This class provides means to broadcast Events to EventListeners. It
contains a list of listeners, and when an event is generated it is passed to
the members of the list. The class provides calls for adding and
removing listeners.

d. Implement subclasses of Event (Trigger, Request, ReadoutRequest,
ControlRequest, Reply, ReadoutReply)

e. Implement InterruptEventGenerator
Contains interface for install, enable and disable an interrupt handler.
The interrupt handler is a method within the class.

f. Implement TimeEventGenerator
Subclass of InterruptEventGenerator. Configures software timer to call
the interrupt handler.

4. Alarms
a. Implement Alarm (requires 3a)

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 37

An Alarm is an event that is generated if certain conditions are met, such
as an EchoTek time out.

b. Implement AlarmGenerator
Provides the ability to send Alarms to the AlarmTask.

5. Tasks (requires on 2a)
a. Implement ControlTask

This class contains code for managing a generic data acquisition
environment. Provides calls for adding DataAcquisitionTasks and
buffers.

i. Implement Metadata
This class contains any generic metadata associated with the
data acquisition system. For example the current status of the
system.

b. Implement DataAcquisitionTask
The actual data acquisition work is performed by the
DataAcquisitionTask. Generically this task repeats the following
operation upon the reception of a trigger: read the DataSource, save
DataBuffer and wait for another Trigger. Specialized subclasses can
implement code for dealing with specific hardware. This class should
also be available to use in an actual system without adding any code, if
the DataSource and DataBuffers don’t require any special handling (e.g.
the BPMDisplayTask on Figure 2 may be only a DataAcquisitionTask
whose DataSource is the BPMFastAbortBuffer and whose DataBuffer is
a BPMDisplayBuffer).

c. Implement BufferReadoutTask
This class handles user data requests. Data is read from internal buffers
and formatted according to a PackStrategy before being sent to the user.

d. Implement AlarmTask
This task receives internal Alarms, and decide if external alarms should
be generated.

6. Task Pool
a. Implement TaskPool (requires 2a)

Provides a generic pool of tasks, providing interface for managing a
group of identical tasks.

b. Implement BufferReadoutTaskPool (requires 5p)
Implements a pool of BufferReadoutTasks by adding specific
functionality for managing and controlling that type of task. For
example, this specialized pool need to implement calls to add/remove
buffers to the tasks.

7. External Communication
Implementation of calls (set of classes and wrappers) that can be made from
ACNET/MOOC for data request, data acquisition specifications and control
requests.

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 38

At the end of the implementation of the generic framework it is expected to have a test
version of the system running, generating fake data, receiving comands and requests from
users.

3.5.3.2 Building Tevatron BPM

The implementation of all classes for the Tevatron specific system are independent. Any
requirement on input/output data can be fulfilled by using Test classes from the generic
framework. For example, it is not necessary to have the EchoTek class in place to
generate data, one can use the TestDataSource class for that purpose or implement a
TestEchoTek class which generates simulated data. The list of implementation tasks
follows:

1. BPM hardware
a. Implement EchoTek

Contains all EchoTek related code. Provides interface for configuring
the board, set diagnostics mode, enable debugging, etc.

b. Implement EchoTekPool
Represents a set of EchoTek objects. Has the ability to probe the VME
bus for boards and add them to the pool automatically. Provides access
to a single board and is able to send commands to all boards.

2. BLM hardware
a. Implement TBLM

Software representation of the BLM hardware, providing the interface
for reading and writing to BLM registers.

3. Timing system
a. Implement TBPMTimingSystem

4. Control
a. Implement TBPMControlTask

5. Data
a. Implement TBLMData
c. Implement TBPMData
d. Implement TBPMChannel
e. Implement TBPMClosedOrbitPackStrategy
f. Implement TBPMTurnByTurnPackStrategy
g. Implement TBPMTimeSlicedPackStrategy
h. Implement TBLMPackStrategy
i. Implement TBLMTimeSlicedPackStrategy

6. Data acquisition
a. Implement TBPMClosedOrbitTask

This class has to deal directly with the EchoTek boards and the timing
system. Cannot use the generic DataAcquisition class for readout.

b. Implement TBPMTurnByTurnTask
This is a specialized class and like the TBPMClosedOrbitTask it has to
communicate with the EchoTek boards and the timing system

c. Implement TBPMInjectionTurnByTurnTask

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 39

This is a specialization of the TBPMTurnByTurnTask. There are not
many additions to the code. In the implementation it is possible that a
subclass is not even necessary to implement this feature.

d. Implement other data acquisition tasks: The tasks shown in Figure 2 are
able to use the generic algorithm implemented in the DataAcquitisionTask
class. They basically will read data from an input buffer and save it to an
output buffer. With the exception of the BLMFastAbortTask, which will
get input data from the BLM chassis.

7. Events
a. Implement StateChangeEventGenerator
b. Implement TCLKEventGenerator

8. Alarms
a. Implement TBPMAlarmTask

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 40

4 Appendix

4.1 The Recycler Software

The current recycler software provides configuration, read out and diagnostics capability
for a hardware setup specific to get proton position in the recycler ring. The hardware
involved consists of:

- Motorola MVME processor board with two IP320 ADC and one IPUCD
TCLK/MDAT

- IP carrier containing four IPTSG timing signal generator modules developed at
Fermilab.

- EchoTek boards

The software configures all timing devices and the EchoTek boards according to read out
specifications passed through ACNET. The software allows the recycler BPM to run in
the following modes:

- Background Flash;
- Flash;
- Closed Orbit;
- Turn-by-Turn;
- Turn-by-Turn Scan.

The following subsections describe the current software from the viewpoint of
management, control and buffering techniques.

4.1.1 Control

The system has a main control task (ArmEventTask), which is responsible for spawning
tasks for handling specific modes of operation. For example: RepetitiveFlashTask and
TurnByTurnTask.

When switching modes, the ArmEventTask has to start a new task that has the ability to
configure and conduct the read out for requested mode. When starting the new mode the
new task is responsible for configuring the hardware (EchoTek board and timing system).

The communication between tasks is handled through message queues, for example to
signal events such as measurement complete. Message queues are also used to signal
triggers received by interrupt handlers.

4.1.2 Buffering

The data read out by the tasks is kept in buffers visible inside the BPM class (which is the
main class in the system). The buffers have predefined size and are managed by the task

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 41

that currently use it. Since there is only one readout task running at a time, there are no
writing conflicts. Data can be read from the buffers via ACNET or backdoor requests.

4.1.3 Readout

Readout tasks wait for signals from the message queue. The interrupt handlers receive the
external trigger and send data to the queue, which is immediately received by the readout
task.

4.1.4 ACNET Communication

In parallel to the readout, the software can receive ACNET/MOOC calls to retrieve data
from the buffers. The software is accessed through callbacks, which extract raw data
from the BPM buffers and calculates the positions and intensities. The data is packed and
returned in the response to the online software.

4.1.5 Debug and Diagnostics

The page R33 provides ways to configure the recycler BPMs, such as selection mode of
operation, enabling/disabling diagnostics and setting timing constants. It is possible to
control any recycler crate from the software. The communication between R33 and the
recycler software is via ACNET.

The recycler software also uses the backdoor scheme for getting data using and
alternative way to ACNET. It is a client/server facility, where the server is the front-end
and the client is a remote application, currently labview.

The server receives requests to change configuration, return data, and turn diagnostics on
among others. The server is programmed by adding Accessors, which will serve as bridge
to the internals of the system.

A new version of the backdoor software allowing peer-to-peer communication is planned.

4.1.6 Alarms

Not implemented in the current version of the recycler software.

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 42

4.2 Class Diagram

Figure 23 – Complete TBPM front-end software class diagram (mixed of generic and TeV specific

classes)

 Tevatron BPM Software Design for Data Acquisition, Version 9.0, 3/31/2004

3/31/04 43

5 Bibliography

[Cockburn] Alistair Cockburn, Writing Effective Use Cases, Addison-Wesley, 2001.

[Fowler] Martin Fowler, UML Distilled: A brief guide to the standard object modeling
language, Addison-Wesley, 2003.

	Introduction
	Proposed Tevatron BPM Software
	Control
	Buffering
	Data Acquisition
	ACNET Communication
	Buffer Readout
	Debug and Diagnostics
	Software Diagram

	Software Design
	Use Cases
	Initialization
	Description
	Basic Flow of Events
	Alternative Flows
	Preconditions
	Postconditions

	Mode Change
	Description
	Basic Flow of Events
	Alternative Flows
	Preconditions
	Postconditions

	Buffer Readout
	Description
	Basic Flow of Events
	Alternative Flows
	Preconditions
	Postconditions

	Diagnostic
	Description
	Basic Flow of Events
	Alternative Flows
	Preconditions
	Postconditions

	Alarm
	Description
	Basic Flow of Events
	Alternative Flows
	Preconditions
	Postconditions

	Data Acquisition
	Description
	Basic Flow of Events
	Alternative Flows
	Preconditions
	Postconditions

	State Device Change
	Description
	Basic Flow of Events
	Alternative Flows
	Preconditions
	Postconditions

	Configuration Change
	Description
	Basic Flow of Events
	Alternative Flows
	Preconditions
	Postconditions

	Class Diagrams
	Tasks
	Controls
	Events
	Event Listeners and Generators
	Data
	Alarms

	Activity Diagrams
	Sequence Diagrams
	Initialization
	Mode Change
	Buffer Readout
	Alarms
	Events
	Data Acquisition

	Packages
	Generic BPM classes (GBPM)
	Tevatron BPM classes (TBPM)
	TBPM Buffers

	Implementation
	Building the generic framework
	Building Tevatron BPM

	Appendix
	The Recycler Software
	Control
	Buffering
	Readout
	ACNET Communication
	Debug and Diagnostics
	Alarms

	Class Diagram

	Bibliography

